КУРСОВАЯ РАБОТА Анализ неоднородности обеспеченности почвы подвижными Фосфатами при выращивании озимой пшеницы в Ленинском Районе АРК |
Землеустройство - Курсовые по землеустройству |
Страница 5 из 13
Третий класс - это справочные картографические системы (СКС). Они сочетают в себе хранение и большинство возможных видов визуализации пространственно распределенной информации, содержат механизмы запросов по картографической и атрибутивной информации, но при этом существенно ограничивают возможности пользователя по дополнению встроенных баз данных. Их обновление (актуализация) носит цикличный характер и производится обычно поставщиком СКС за дополнительную плату. Четвертый класс программного обеспечения - средства пространственного моделирования. Их задача - моделировать пространственное распределение различных параметров (рельефа, зон экологического загрязнения, участков затопления при строительстве плотин и другие). Они опираются на средства работы с матричными данными и снабжаются развитыми средствами визуализации. Типичным является наличие инструментария, позволяющего проводить самые разнообразные вычисления над пространственными данными (сложение, умножение, вычисление производных и другие операции). Пятый класс, на котором стоит заострить внимание - это специальные средства обработки и дешифрирования данных зондирований земли. Сюда относятся пакеты обработки изображений, снабженные в зависимости от цены различным математическим аппаратом, позволяющим проводить операции со сканированными или записанными в цифровой форме снимками поверхности земли. Это довольно широкий набор операций, начиная со всех видов коррекций (оптической, геометрической)через географическую привязку снимков вплоть до обработки стереопар с выдачей результата в виде актуализированного топоплана. Кроме упомянутых классов существует еще разнообразные программные средства, манипулирующие с пространственной информацией. Это такие продукты, как средства обработки полевых геодезических наблюдений (пакеты, предусматривающие взаимодействие с GPS-приемниками, электронными тахометрами, нивелирами и другим автоматизированным геодезическим оборудованием), средства навигации и ПО для решения еще более узких предметных задач (изыскания, экология, гидрогеология и пр.). Поскольку настоящий обзор ориентирован на широкий круг пользователей, дальше речь пойдет лишь о наиболее универсальных классах программ. Естественно, возможны и другие принципы классификации программного обеспечения: по сферам применения, по стоимости, поддержке определенным типом (или типами) операционных систем, по вычислительным платформам (ПК, рабочие Unix-станции) и т д. Стремительный рост количества потребителей ГИС-технологий за счет децентрализации расходования бюджетных средств и приобщения к ним все новых и новых предметных сфер их использования. Если до середины 90-х годов основной рост рынка был связан лишь с крупными проектами федерального уровня, то сегодня главный потенциал перемещается в сторону массового рынка. Это мировая тенденция: по данным исследовательской фирмы Daratech (США), мировой рынок ГИС для персональных компьютеров в настоящий момент в 121,5 раза опережает общий рост рынка ГИС-решений. Массовость рынка и возникающая конкуренция приводят к тому, что потребителю за ту же или меньшую цену предлагается все более качественный товар. Так, для ведущих поставщиков инструментальных ГИС стала уже правилом поставка вместе с системой и цифровой картографической основы того региона, где распространяется товар. Да и сама приведенная классификация ПО стала реальностью. Еще буквально два-три года назад функции автоматизированной векторизации и справочных систем можно было реализовать только с помощью развитых и дорогостоящих инструментальных ГИС (Arc/Info, Intergraph). Прогрессирующая тенденция к модульности систем, позволяющая оптимизировать затраты для конкретного проекта. Сегодня даже пакеты, обслуживающие какой-либо технологический этап, например векторизаторы, можно приобрести как в полном, так и в сокращенном наборе модулей, библиотек символов и т. п. Выход целого ряда отечественных разработок на "рыночный" уровень. Такие продукты, как GeoDraw/GeoGraph, Sinteks/Tri, GeoCAD, EasyTrace, обладают не только значительным количеством пользователей, но и имеют уже все атрибуты рыночного оформления и поддержки. В российской, геоинформатике есть некая критичная цифра работающих инсталляций - пятьдесят. Как только вы ее достигли, дальше есть только два пути: или резко вверх, наращивая число своих пользователей, либо - уход с рынка из-за невозможности обеспечить необходимую поддержку и развитие своему продукту. Методика определения размера элементарного участка для агрохимического обследования поля.Существующие методы агрохимического обследования предусматривают определённый порядок разбивки сельскохозяйственного поля на элементарные участки, характеризующиеся одной объединённой почвенной пробой. В «Методических указаниях по проведению комплексного агрохимического обследования почв сельскохозяйственных угодий» рекомендуется, предварительно изучив историю угодья, разбивать его на участки, в зависимости от количества применяемых фосфорных удобрений. Если фосфора вносится по действующему веществу менее 60 кг/га, то площадь участка составляет 5 га. При норме внесения на 1 га 60..90 кг P2O5 образец берётся с участка площадью 4 га, а при более 90 кг – 2 га. Полевые работы проводятся при температуре не ниже +5 С. На полях, где доза внесения составляла не более 90 кг/га д. в., отбор проб можно проводить в течение всего вегетационного сезона, если больше – спустя 2-2,5 месяца после внесения. На полях, где интенсивно применяются пестициды, отбор проб проводится через 1,5-2 месяца после обработки. Зараженные радионуклидами территории обследуются до посева сельскохозяйственных культур или во время уборки. Внесение органических удобрений на сроки отбора образцов не влияет. При этом агрохимик должен изучить почвенную карту, удостовериться в однородности почвенного покрова и только после этого провести вышеуказанную работу. На практике же чаще всего используют картографическую основу предварительных туров обследования, и если агроном (заказчик) не проявит должного внимания к этой работе, делают всё по схеме предыдущего тура обследования. Причём размеры, местоположение элементарного участка и взятие на нём проб определяются без точной топографической привязки, приблизительно, что соответственно даёт приблизительный результат. Это особенно сказывается на сравнении результатов анализа по разным годам, так как при очередном обследовании проба берётся, как правило, не в том же самом месте, а с погрешностью в десятки метров или более. Подобные методы обследования сельскохозяйственных полей во всём мире считаются устаревшими и не соответствуют требованиям информационной технологии точного земледелия. Новым в предлагаемой концепции является то, что каждая взятая проба привязывается к единой системе позиционирования, что в дальнейшем позволяет более точно оценивать результаты последовательно проведённых туров обследования. Наряду с точным фиксированием и хранением в ЭВМ координат каждой взятой пробы на обследуемой территории новая технология обеспечивает автоматическое создание электронной карты-схемы обследования с заданными размерами элементарного участка. Эта карта-схема обследования определяет структуру будущей геоинформационной базы данных. Размер элементарного участка и его геометрическая форма (квадрат или прямоугольник) задаются оператором путём ввода конкретных значений сторон участка - в метрах или площади участка – в гектарах. Сетка накладывается произвольно и записывается в память компьютера, причём края сетки, выходящие за границу контура, обрезаются. Элементарным участкам (ячейкам сетки) автоматически присваиваются порядковые номера. При взятии проб с каждого элементарного участка номеру пробы присваивается порядковый номер участка. При отборе проб оператор, двигаясь внутри элементарного участка, делает 10-20 уколов автоматическим пробоотборником, останавливаясь при каждом уколе. На панели бортового компьютера записывается пройденный путь и сохраняется в памяти компьютера. Программное обеспечение должно гарантировать навигацию к любой отмеченной в бортовом компьютере оператором точке на поле. Это удобно при движении к месту последней взятой пробы для продолжения работ или к проблемному участку, где необходимо провести дополнительные исследования. Выбор размера и геометрической формы элементарного участка, а также количество и комбинацию отобранных на нём проб (для создания объединённой пробы) осуществляется индивидуально для каждого обследуемого поля. Величина участка может меняться в зависимости от рельефа или других особенностей пашни, а также от особенностей технологии отбора или в других целях. При обследовании в производственных целях подробное разбиение на элементарные участки представляется избыточным. В Северо-Западном регионе мы рекомендовали бы делать площадь элементарного участка не менее одного гектара. В хозяйствах Европы, например, размер элементарного участка нередко определяет заказчик, в зависимости от стоимости услуги, так как агрохимическое обследование стоит там недешево. Стоит отметить, что при агрохимическом обследовании можно разбивать поле на элементарные участки не равномерно, как это было описано выше, а выборочно, на основании пространственно-ориентированных Карт урожайности. Развитие современных технологий позволяет получать важнейшую информацию о посевных площадях, т. н. карты урожайности. Используя специальные датчики, установленные на уборочной технике, а также бортовые компьютеры и приёмники GPS, после уборки обмолачиваемых культур мы можем получать пространственно-ориентированные карты урожайности. Получение подобных карт является несомненным прорывом в области земледелия, так как позволяет нам определять неоднородность главного из всех показателей – урожайности. Полученные карты включаются в геоинформационную базу хозяйства и служат отправной точкой при планировании агрохимического обследования, так как позволяют выявить с высокой точностью проблемные участки поля. Эта информация существенно снижает издержки по обследованию поля, так как позволяет целенаправленно определить наиболее важные места для обследования. Карты урожайности получаются с помощью зернового комбайна Claas Dominator 130 ©, оснащённого датчиками урожайности, бортовым компьютером ACT 2 и системой DGPS. Можно определить по карте достаточно точно границы участков с низкой урожайностью. Исходя из этого, обследование почвы в этих местах целесообразно в дальнейшем проводить особенно подробно, и при этом важно выяснить причину низкой урожайности, чтобы в следующем сезоне избежать потерь в урожае запланированной культуры на этом поле. Отметим, что есть возможность укомплектовать обычные используемые в нашей стране комбайны аппаратурой учета урожайности обмолачиваемых культур. Пространственное распределение урожайности имеет уникальное значение, так как нет более объективного показателя неоднородности сельскохозяйственного поля по плодородию, чем карта, характеризующая количественную интегральную оценку продукционного процесса. 2.Расчетно-графическая часть. Построение схемы отбора почвенных проб для диагностики доступных фосфатов с помощью GPS-приемников. По условиям задания перед отбором почвенных проб для диагностики доступных фосфатов с помощью GPS-приемника фиксируются координаты границ поля. Затем в процессе отбора проб так же отмечаются их глобальные сферические координаты (в градусах и минутах широты и долготы). Дополнительно к ним в задании для упрощения расчетов указана базисная точка, определяющая начало отсчета местных координат. Исходные координаты даны в двух таблицах. 2.1 Построение схемы отбора почвенных проб для диагностики подвижных фосфатов по координатам с GPS-приемником. Вариант №4.Ленинский р-он. Культура–Озимая пшеница.
|